Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too, e.g. shells, teddy bears, cars)	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Starting at the bigger number and counting on - using cubes Or numicon....	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2? $4+2$

Regrouping to make 10; using ten frames and counters/cubes or using Numicon.$6+5$		Children to draw counter	he ten frame and /cubes.	Children to develop an understanding of equality e.g.$\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$		
TO + O using base 10. Continue to develop understanding of partitioning and place value.$41+8$		Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.			$\begin{aligned} & \hline 41+8 \\ & 1+8=9 \\ & 0+9=49 \\ & +\begin{array}{r} 4 \\ \hline 48 \\ \hline 49 \\ \hline 40 \\ \hline \end{array} \end{aligned}$	
Conceptual Variation - Different ways to ask children to solve calculations e.g. $21+34$						
$$	In year and in How m 21	ord problems: there are 21 children ear 4, there are 34 children. y children in total? $34=55 . \text { Prove it }$	$\begin{aligned} & \begin{array}{l} 21 \\ +34 \\ ? \end{array} \\ & ?=21+34 \end{aligned} 21+34=$ Calculate the sum of and thirty-four	wenty-one		

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	$\begin{gathered} 4-3= \\ =4-3 \end{gathered}$4 3 $?$
Counting back (using number lines or number tracks) children start with 6 and count back 2. $6-2=4$	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. $8-5$, the difference is ? Children to explore why $9-6=8-5=7-4$ have the same difference.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition $3 \times 4 / 4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{array}{r} 3 \times 4=12 \\ 4+4+4=12 \end{array}$
Number lines to show repeated groups- 3×4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$
Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

Concrete	Pictorial	Abstract
Sharing using a range of objects. $6 \div 2$	Represent the sharing pictorially.	$6 \div 2=3$3 3 Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$ 3 groups of 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.
Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3=55 \times 3=1515 \div 5=33 \times 5$ $=15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Conceptual variation; different ways to ask children to solve $18 \div 3$

6	6	6	Mai swam 6 lengths each time she went swimming. She swam 18 lengths one week? How many times did she go swimming that week?		
				$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\begin{array}{lllllll}0 & 3 & 6 & 9 & 12 & 15 & 18\end{array}$ What is the calculation? What is the answer?

